Excited-state mixed-valence distortions in a diisopropyl diphenyl hydrazine cation.

نویسندگان

  • Jenny V Lockard
  • Jeffrey I Zink
  • Yun Luo
  • Michael N Weaver
  • Asgeir E Konradsson
  • Joseph W Fowble
  • Stephen F Nelsen
چکیده

Excited-state mixed valence (ESMV) occurs in the 1,2-diphenyl-1,2-diisopropyl hydrazine radical cation, a molecule in which the ground state has a symmetrical charge distribution localized primarily on the hydrazine, but the phenyl to hydrazine charge-transfer excited state has two interchangeably equivalent phenyl groups that have different formal oxidation states. Electronic absorption and resonance Raman spectra are presented. The neighboring orbital model is employed to interpret the absorption spectrum and coupling. Resonance Raman spectroscopy is used to determine the excited-state distortions. The frequencies of the enhanced modes from the resonance Raman spectra are used together with the time-dependent theory of spectroscopy to fit the two observed absorption bands that have resolved vibronic structure. The origins of the vibronic structure and relationships with the neighboring orbital model are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Excited-state mixed valence in a diphenyl hydrazine cation: Spectroscopic consequences of coupling and transition dipole moment orientation.

A quantitative model of mixed-valence excited-state spectroscopy is developed and applied to 2,3-diphenyl-2,3-diazabicyclo[2.2.2]octane. The lowest-energy excited state of this molecule arises from a transition from the ground state, where the charge is located on the hydrazine bridge, to an excited state where the charge is associated with one phenyl group or the other. Coupling splits the abs...

متن کامل

Photoinduced electron transfer in 2-tert-butyl-3-(anthracen-9-yl)-2,3-diazabicyclo[2.2.2]octane.

Intramolecular photoinduced electron transfer from a hydrazine unit to an aromatic group is studied by resonance Raman spectroscopy and electronic absorption spectroscopy. Substituted hydrazine functional groups have played an important role in studies of electron-transfer reactions, photoinduced intramolecular electron transfer, and of mixed valence. A prototypical compound, 2-tert-butyl-3-(an...

متن کامل

Spectroscopic consequences of a mixed valence excited state: quantitative treatment of a dihydrazine diradical dication.

A model for the quantitative treatment of molecular systems possessing mixed valence excited states is introduced and used to explain observed spectroscopic consequences. The specific example studied in this paper is 1,4-bis(2-tert-butyl-2,3-diazabicyclo[2.2.2]oct-3-yl)-2,3,5,6-tetramethylbenzene-1,4-diyl dication. The lowest energy excited state of this molecule arises from a transition from t...

متن کامل

Interpretation of unusual absorption bandwidths and resonance Raman intensities in excited state mixed valence.

Excited state mixed valence (ESMV) occurs in molecules in which the ground state has a symmetrical charge distribution but the excited state possesses two or more interchangeably equivalent sites that have different formal oxidation states. Although mixed valence excited states are relatively common in both organic and inorganic molecules, their properties have only recently been explored, prim...

متن کامل

Excited-state mixed valence in transition metal complexes.

Mixed valence in the lowest-energy metal-to-ligand charge-transfer excited state of di-(4-acetylpyridine)tetraammineruthenium(II) complexes is defined and analyzed. The excited state has two interchangeably equivalent ligands with different oxidation states. The electronic absorption band energies, selection rules, and bandwidths are analyzed quantitatively in terms of the signs and orientation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 51  شماره 

صفحات  -

تاریخ انتشار 2006